557 research outputs found

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure

    Charge collection properties of TowerJazz 180 nm CMOS Pixel Sensors in dependence of pixel geometries and bias parameters, studied using a dedicated test-vehicle: the Investigator chip

    Full text link
    This paper contains a compilation of parameters influencing the charge collection process extracted from a comprehensive study of partially depleted Monolithic Active Pixel Sensors with small (<25 um2^2) collection electrodes fabricated in the TowerJazz 180 nm CMOS process. These results gave guidance for the optimisation of the diode implemented in ALPIDE, the chip used in the second generation Inner Tracking System of ALICE, and serve as reference for future simulation studies of similar devices. The studied parameters include: reverse substrate bias, epitaxial layer thickness, charge collection electrode size and the spacing of the electrode to surrounding in-pixel electronics. The results from pixels of 28 um pitch confirm that even in partially depleted circuits, charge collection can be fast (<10 ns), and quantify the influence of the parameters onto the signal sharing and amplitudes, highlighting the importance of a correct spacing between wells and of the impact of the reverse substrate bias

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb–Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.publishedVersio

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF

    Measurement of the production of (anti)nuclei in p–Pb collisions at sNN=8.16TeV

    Get PDF
    Measurements of (anti)proton, (anti)deuteron, and (anti)3He production in the rapidity range -1 > y > 0 as a function of the transverse momentum and event multiplicity in p–Pb collisions at a center-of-mass energy per nucleon–nucleon pair sqrt(sNN) = 8.16 TeV are presented. The coalescence parameters B2 and B3, measured as a function of the transverse momentum per nucleon and of the mean charged-particle multiplicity density, confirm a smooth evolution from low to high multiplicity across different collision systems and energies. The ratios between (anti)deuteron and (anti)3He yields and those of (anti)protons are also reported as a function of the mean charged-particle multiplicity density. A comparison with the predictions of the statistical hadronization and coalescence models for different collision systems and center-of-mass energies favors the coalescence description for the deuteron-to-proton yield ratio with respect to the canonical statistical model

    Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions

    Get PDF
    Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at root s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momentum (p(T)) of 0.2 GeV/c and up to p(T) = 35 GeV/c, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p-Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the p(T) range 0.5 < p(T) < 26 GeV/c at root s(NN) = 8.16 TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p-Pb collisions grow faster than linear with the self-normalised multiplicity. A strong p(T) dependence is observed in pp collisions, where the yield of high-p(T) electrons increases faster as a function of multiplicity than the one of low-p(T) electrons. The measurement in p-Pb collisions shows no p(T) dependence within uncertainties. The self-normalised yields in pp and p-Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations

    Charged-particle multiplicity fluctuations in Pb–Pb collisions at √sNN = 2.76 TeV

    Get PDF
    Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at √sNN = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range |η|<0.8 and transverse momentum 0.2<pT<2.0 GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.publishedVersio

    Study of very forward energy and its correlation with particle production at midrapidity in pp and p-Pb collisions at the LHC

    Get PDF
    The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p-Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at √s = 13 TeV and in p-Pb collisions at √sNN = 8.16 TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used

    Neutral to charged kaon yield fluctuations in Pb – Pb collisions at sNN=2.76 TeV

    Get PDF
    We present the first measurement of event-by-event fluctuations in the kaon sector in Pb – Pb collisions at √sNN = 2.76 TeV with the ALICE detector at the LHC. The robust fluctuation correlator νdyn is used to evaluate the magnitude of fluctuations of the relative yields of neutral and charged kaons, as well as the relative yields of charged kaons, as a function of collision centrality and selected kinematic ranges. While the correlator νdyn[K+, K− ] exhibits a scaling approximately in inverse proportion of the charged particle multiplicity, νdyn[K0 S , K± ] features a significant deviation from such scaling. Within uncertainties, the value of νdyn[K0S , K± ] is independent of the selected transverse momentum interval, while it exhibits a pseudorapidity dependence. The results are compared with HIJING, AMPT and EPOS–LHC predictions, and are further discussed in the context of the possible production of disoriented chiral condensates in central Pb – Pb collisions
    corecore